Problem Set 2 (Instructor: T. Pulliam)

Problem Set on Taylor Tables and Truncatin Error

- 1. Using Taylor Tables find er_t for
 - (a) $(\delta_x u)_i = (u_{i+1} u_{i-1})/(2\Delta x)$
 - (b) $(\delta_x u)_i = (-u_{i+2} + 8u_{i+1} 8u_{i-1} + u_{i-2})/(12\Delta x)$
 - (c) $\frac{1}{6} \left((\delta_x u)_{j+1} + 4(\delta_x u)_j + (\delta_x u)_{j-1} \right) = \left(u_{j+1} u_{j-1} \right) / (2\Delta x)$
- 2. The finite difference scheme for the 1^{st} derivative is given by

$$(\delta_x u)_j = \frac{1}{\alpha \Delta x} \left(-u_{j+2} + \beta u_{j+1} - \beta u_{j-1} + u_{j-2} \right)$$

- (a) Using Taylor Tables, find the values of α and β which result in a 4^{th} order accurate method. Hint: Multiply by $\alpha \Delta x$ to make the algebra easier
- (b) Find er_t for the method.
- (c) If we set $\beta = 4$, find α and identify the order of acuracy.
- 3. Find, by means of a Taylor table, the values of a, b, c, and d that minimize the value of er_t in the expression

$$a\left(\frac{\partial u}{\partial x}\right)_{j-1} + \left(\frac{\partial u}{\partial x}\right)_{j} - \frac{1}{\Delta x}[bu_{j+1} + cu_{j} + du_{j-1}] = ? \tag{1}$$

What is the resulting finite difference scheme and what is the value of er_t ?

Problem Set on Modified Wave Numbers

- 4. Find the expression for the modified wave number (ik^*) in the following centered difference approximations to $(\delta_x u)_j$ in terms of Δx and k. This is done just as done in class where we let $u_j = e^{ikj\Delta x}$. (Cast the results in terms of $sin(k\Delta x)$ and $cos(k\Delta x)$).
 - (a) $(\delta_x u)_j = (u_{j+1} u_{j-1})/(2\Delta x)$
 - (b) $(\delta_x u)_j = (-u_{j+2} + 8u_{j+1} 8u_{j-1} + u_{j-2})/(12\Delta x)$
 - (c) $\frac{1}{6} \left((\delta_x u)_{j+1} + 4(\delta_x u)_j + (\delta_x u)_{j-1} \right) = \left(u_{j+1} u_{j-1} \right) / (2\Delta x)$
 - 5. Find the expression for the modified wave number in the following one sided difference approximations to $(\delta_x u)_j$ in terms of Δx and k. In this case there will be real and imaginary parts to the modified wave number. (Cast the results in terms of $sin(k\Delta x)$ and $cos(k\Delta x)$).
 - (a) $(\delta_x u)_j = (u_j u_{j-1}) / \Delta x$
 - (b) $(\delta_x u)_j = (3u_j 4u_{j-1} + u_{j-2})/(2\Delta x)$
 - (c) $2(\delta_x u)_j + (\delta_x u)_{j-1} = (u_{j+1} + 4u_j 5u_{j-1})/(2\Delta x)$